Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(3): e4011, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583080

RESUMO

Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.


Assuntos
Neoplasias Colorretais , Flavanonas , Proteína Supressora de Tumor p53 , Humanos , Regulação para Baixo , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Proliferação de Células
2.
CNS Neurosci Ther ; 30(3): e14473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37904726

RESUMO

BACKGROUND: Gemfibrozil (Gem) is a drug that has been shown to activate PPAR-α, a nuclear receptor that plays a key role in regulating lipid metabolism. Gem is used to lower the levels of triglycerides and reduce the risk of coronary heart disease in patients. Experimental studies in vitro and in vivo have shown that Gem can prevent or slow the progression of neurological disorders (NDs), including cerebral ischemia (CI), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation is known to play a significant role in these disorders. METHOD: The literature review for this study was conducted by searching Scopus, Science Direct, PubMed, and Google Scholar databases. RESULT: The results of this study show that Gem has neuroprotective effects through several cellular and molecular mechanisms such as: (1) Gem has the ability to upregulate pro-survival factors (PGC-1α and TFAM), promoting the survival and function of mitochondria in the brain, (2) Gem strongly inhibits the activation of NF-κB, AP-1, and C/EBPß in cytokine-stimulated astroglial cells, which are known to increase the expression of iNOS and the production of NO in response to proinflammatory cytokines, (3) Gem protects dopamine neurons in the MPTP mouse model of PD by increasing the expression of PPARα, which in turn stimulates the production of GDNF in astrocytes, (4) Gem reduces amyloid plaque pathology, reduces the activity of glial cells, and improves memory, (5) Gem increases myelin genes expression (MBP and CNPase) via PPAR-ß, and (6) Gem increases hippocampal BDNF to counteract depression. CONCLUSION: According to the study, Gem was investigated for its potential therapeutic effect in NDs. Further research is needed to fully understand the therapeutic potential of Gem in NDs.

3.
Eur J Neurosci ; 59(2): 283-297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043936

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.


Assuntos
MicroRNAs , Doença de Parkinson , Ratos , Animais , Humanos , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose , Neurônios Dopaminérgicos/metabolismo , Biomarcadores/metabolismo
4.
Food Sci Nutr ; 11(12): 7458-7468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107139

RESUMO

Globally, breast cancer (BC) is the leading cause of cancer-related deaths in women. Hence, developing a therapeutic plan to overcome the disease is crucial. Numerous factors such as endogenous hormones and environmental factors may play a role in the pathophysiology of BC. Regarding the multi-modality treatment of BC, natural compounds like ellagic acid (EA) received has received increased interest in antitumor efficacy with lower adverse effects. Based on the results of this comprehensive review, EA has multiple effects on BC cells including (1) suppresses the growth of BC cells by arresting the cell cycle in the G0/G1 phase, (2) suppresses migration, invasion, and metastatic, (3) stimulates apoptosis in MCF-7 cells via TGF-ß/Smad3 signaling axis, (4) inhibits CDK6 that is important in cell cycle regulation, (5) binds to ACTN4 and induces its degradation via the ubiquitin-proteasome pathway, inducing decreased cell motility and invasion in BC cells, (6) inhibits the PI3K/AKT pathway, and (7) inhibits angiogenesis-associated activities including proliferation (reduces VEGFR-2 tyrosine kinase activity). In conclusion, EA exhibits anticancer activity through various molecular mechanisms that influence key cellular processes like apoptosis, cell cycle, angiogenesis, and metastasis in BC. However, further researches are essential to fully elucidate its molecular targets and implications for clinical applications.

5.
Food Sci Nutr ; 11(11): 6789-6801, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970406

RESUMO

Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant-based foods. According to research, they have a potential role in the prevention and treatment of cancer. Apigenin is a flavonoid that is present in many fruits and vegetables. It has been used as a natural antioxidant for a long time and has been considered due to its anticancer effects and low toxicity. The results of this review study show that apigenin has potential anticancer effects on CC cells through various mechanisms. In this comprehensive review, we present the cellular targets and signaling pathways of apigenin indicated to date in in vivo and in vitro CC models. Among the most important modulated pathways, Wnt/ß-catenin, PI3K/AKT/mTOR, MAPK/ERK, JNK, STAT3, Bcl-xL and Mcl-1, PKM2, and NF-kB have been described. Furthermore, apigenin suppresses the cell cycle in G2/M phase in CC cells. In CC cells, apigenin-induced apoptosis is increased by inhibiting the formation of autophagy. According to the results of this study, apigenin appears to have the potential to be a promising agent for CC therapy, but more research is required in the field of pharmacology and pharmacokinetics to establish the apigenin effects and its dosage for clinical studies.

6.
Mol Neurobiol ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996730

RESUMO

Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.

7.
Inflammopharmacology ; 31(6): 2955-2971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843641

RESUMO

Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Animais , Camundongos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Inflamação/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Microglia , Camundongos Endogâmicos C57BL , NADH Desidrogenase/metabolismo , NADH Desidrogenase/farmacologia , NADH Desidrogenase/uso terapêutico
8.
Food Sci Nutr ; 11(9): 5050-5062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701236

RESUMO

Chronic administration of d-galactose (d-gal) in rodents reproduces the overproduction of reactive oxygen species of physiological aging. The present research shows for the first time distinct signatures on d-gal-induced aging (500 mg/kg, 6 weeks) and the preventive and protective potential of two vitamin D (50 IU) supplementation regimens (pre-induction and simultaneous, respectively) in two vital organs (heart and brain). d-gal-induced notorious alterations in working memory, a strong increase in brain malondialdehyde (MDA) oxidative levels, and strong downregulation of sirtuin 1 (SIRT1) in the heart and hippocampus and of calstabin2 in the heart. Cardiac and brain superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic antioxidant capacities were damaged, brain calstabin2 was downregulated, and neuropathology was observed. Heart damage also included a moderate increase in MDA levels, serologic lactate dehydrogenase (LDH), total creatine kinase (CK) activities, and histopathological alterations. The used dose of vitamin D was enough to prevent cognitive impairment, avoid muscular damage, hamper cardiac and cerebral oxidative stress, and SIRT1 and calstabin2 downregulation. Most importantly, the potencies of the two preventive schedules depended on the tissue and level of study. The pre-induction schedule prevented d-gal-induced aging by 1 order of magnitude higher than simultaneous administration in all the variables studied except for SIRT1, whose strong downregulation induced by d-gal was equally prevented by both schedules. The benefits of vitamin D for oxidative stress were stronger in the brain than in the heart. Brain MDA levels were more sensitive to damage, while SOD and GPx antioxidant enzymatic activities were in the heart. In this order, the magnitude of SOD, MDA, and GPx oxidative stress markers was sensitive to prevention. In summary, the results unveiled distinct aging induction, preventive signatures, and sensitivity of markers depending on different levels of study and tissues, which are relevant from a mechanistic view and in the design of targeted interventions.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37753585

RESUMO

BACKGROUND: Despite several hundred clinical trials of drugs that initially showed promise, there has been limited clinical improvement in Alzheimer's disease (AD). This may be attributed to the existence of at least 25 abnormal cellular pathways that underlie the disease. It is improbable for a single drug to address all or most of these pathways, thus even drugs that show promise when administered alone are unlikely to produce significant results. According to previous studies, eight drugs, namely, dantrolene, erythropoietin, lithium, memantine, minocycline, piracetam, riluzole, and silymarin, have been found to target multiple pathways that are involved in the development of AD. Among these drugs, riluzole is currently indicated for the treatment of medical conditions in both adult patients and children and has gained increased attention from scientists due to its potential in the excitotoxic hypothesis of neurodegenerative diseases. OBJECTIVE: The aim of this study was to investigate the effects of drugs on AD based on cellular and molecular mechanisms. METHODS: The literature search for this study utilized the Scopus, ScienceDirect, PubMed, and Google Scholar databases to identify relevant articles. RESULTS: Riluzole exerts its effects in AD through diverse pathways including the inhibition of voltage-dependent sodium and calcium channels, blocking AMPA and NMDA receptors and inhibiting the release of glutamic acid release and stimulation of EAAT1-EAAT2. CONCLUSION: In this review article, we aimed to review the neuroprotective properties of riluzole, a glutamate modulator, in AD, which could benefit patients with the disease.

10.
Anticancer Agents Med Chem ; 23(16): 1819-1828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448364

RESUMO

Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/patologia , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo
11.
Fundam Clin Pharmacol ; 37(6): 1092-1108, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402635

RESUMO

BACKGROUND: Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE: This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS: Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS: The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION: Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Autofagia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
12.
Fundam Clin Pharmacol ; 37(6): 1050-1064, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37259891

RESUMO

BACKGROUND: Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE: In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION: We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo , Transdução de Sinais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico
13.
Mol Biol Rep ; 50(6): 5455-5464, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37155008

RESUMO

Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Transdução de Sinais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
14.
Fundam Clin Pharmacol ; 37(5): 900-909, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36960597

RESUMO

Bladder cancer (BC) is known as a prevalent genitourinary malignancy and has a significant mortality rate worldwide. Despite recent therapeutic approaches, the recurrence rate is high, highlighting the need for a new strategy to reduce the BC cell progression. Quercetin, a flavonoid compound, demonstrated promising anticancer properties and could be used in the management of various malignancies such as BC. This comprehensive review summarized quercetin's cellular and molecular mechanisms underlying anticancer activities. The study's findings indicated that quercetin prevents the proliferation of the human BC cell line, promotes apoptosis of BIU-87 cells, reduces the expression of p-P70S6K, and induces apoptosis by p-AMPK. Moreover, quercetin restricts tumor growth through the AMPK/mTOR cascade and prevents colony formation of human BC cells by triggering DNA damage. Studying this review article will help researchers better understand quercetin's functional role in the prevention and treatment of BC.


Assuntos
Quercetina , Neoplasias da Bexiga Urinária , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Proteínas Quinases Ativadas por AMP , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Estresse Oxidativo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Apoptose
15.
Fundam Clin Pharmacol ; 37(3): 599-605, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36600528

RESUMO

Gemfibrozil (GFZ) is a medication of the fibrate category with agonistic effects on peroxisome proliferator-activated receptor-α (PPAR-α) and is effective for hypertriglyceridemia and mixed dyslipidemia. This agent also has anti-inflammatory and antioxidant properties. The current study investigated the effects of GFZ on hepatorenal damages in a D-galactose (D-gal)-induced aging model. We used 28 male mice, which were equally and randomly divided into four groups as follows: normal, D-gal (150 mg/kg/day; intraperitoneal [i.p.], for 6 weeks), GFZ (100 mg/kg/day GFZ, orally [p.o.] for 6 weeks), and the combined D-gal + GFZ. Liver and kidney function indices were measured as serum creatinine, blood urine nitrogen, alanine aminotransferase, and aspartate aminotransferase. Oxidative stress in hepatic and renal tissue was evaluated through malondialdehyde, superoxide dismutase, and glutathione peroxidase levels. Finally, the liver and kidney tissues were assessed for histopathological lesions. The results showed that D-gal-induced aging leads to abnormalities in liver and kidney function indices. D-gal also induced significant oxidative stress and histopathological lesions in these organs. GFZ improved function indices and oxidative stress compared to the D-gal-treated animals. Histological evaluations of the liver and kidney also confirmed these results. These data provide evidence for the potential therapeutic of GFZ in clinical practice for mitigating the hepatorenal damages of aging.


Assuntos
Envelhecimento , Genfibrozila , Masculino , Camundongos , Animais , Genfibrozila/farmacologia , Genfibrozila/metabolismo , Fígado , Estresse Oxidativo , Antioxidantes/farmacologia , Modelos Animais de Doenças , Hipolipemiantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...